Flatness of Semilinear Parabolic PDEs - A Generalized Cauchy-Kowalevski Approach

نویسندگان

  • Birgit Schörkhuber
  • Thomas Meurer
  • Ansgar Jüngel
چکیده

A generalized Cauchy-Kowalevski approach is proposed for flatness-based trajectory planning for boundary controlled semilinear systems of PDEs in a one-dimensional spatial domain. For this, the ansatz presented in [16] using formal integration is generalized towards a unified design framework, which covers linear and semilinear PDEs including rather broad classes of nonlinearities arising in applications. In addition, an efficient semi-numerical solution of the implicit state and input parametrizations is developed and evaluated in simulation scenarios. Simulation results for various types of nonlinearities and a tubular reactor model described by a system of semilinear reaction-diffusion-convection equations illustrate the applicability of the proposed method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flatness of semilinear parabolic PDEs - A generalized Chauchy-Kowalevski approach

A generalized Cauchy-Kowalevski approach is proposed for flatness-based trajectory planning for boundary controlled semilinear systems of PDEs in a one-dimensional spatial domain. For this, the ansatz presented in [16] using formal integration is generalized towards a unified design framework, which covers linear and semilinear PDEs including rather broad classes of nonlinearities arising in ap...

متن کامل

A review of stability and error theory for collocation methods applied to linear boundary value problems

An analysis of discretizations of the Helmholtz equation in L 2 and in negative norms (extended version) Flatness of semilinear parabolic PDEs-A generalized Chauchy-Kowalevski approach 27/2012 R. Donninger and B. Schörkhuber Stable blow up dynamics for energy supercritical wave equations 26/2012 P.

متن کامل

Numerical algorithms for semilinear parabolic equations with small parameter based on approximation of stochastic equations

The probabilistic approach is used for constructing special layer methods to solve the Cauchy problem for semilinear parabolic equations with small parameter. Despite their probabilistic nature these methods are nevertheless deterministic. The algorithms are tested by simulating the Burgers equation with small viscosity and the generalized KPP-equation with a small parameter.

متن کامل

Numerical Methods for Nonlinear Parabolic Equations with Small Parameter Based on Probability Approach

The probabilistic approach is used for constructing special layer methods to solve the Cauchy problem for semilinear parabolic equations with small parameter. In spite of the probabilistic nature these methods are nevertheless deterministic. The algorithms are tested by simulating the Burgers equation with small viscosity and the generalized KPP-equation with a small parameter. 1991 Mathematics...

متن کامل

Self-Similar Blow-Up in Higher-Order Semilinear Parabolic Equations

We study the Cauchy problem in R × R+ for one-dimensional 2mth-order, m > 1, semilinear parabolic PDEs of the form (Dx = ∂/∂x) ut = (−1) D x u + |u| u, where p > 1, and ut = (−1) D x u + e u with bounded initial data u0(x). Specifically, we are interested in those solutions that blow up at the origin in a finite time T . We show that, in contrast to the solutions of the classical secondorder pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Automat. Contr.

دوره 58  شماره 

صفحات  -

تاریخ انتشار 2013